Sistem Kontrol Pada Unit Proses Chilled Water System
DOI:
https://doi.org/10.32502/jse.v10i1.916Keywords:
PCW, PID, HMI, Suhu, TekananAbstract
Penelitian ini bertujuan untuk mengevaluasi bagaimana sistem kontrol otomatis pada unit Process Chilled Water (PCW) di PT. Infineon berfungsi dalam mendukung proses pendinginan yang efisien. Kami fokus pada kinerja sistem dalam mengatur suhu dan tekanan, serta bagaimana kontrol Proportional-Integral-Derivative (PID) berperan dalam menjaga kestabilan operasional. Hasil penelitian menunjukkan bahwa sistem ini bekerja dengan baik, mampu mempertahankan suhu dalam rentang 15˚C hingga 23°C dan tekanan antara 2,5 hingga 3,2 bar. Kontrol PID yang diterapkan terbukti responsif terhadap perubahan suhu dan tekanan, sehingga sistem dapat menyesuaikan diri dengan cepat dan akurat. Dengan menggunakan sensor tekanan dan suhu, sistem secara otomatis mengaktifkan atau menonaktifkan pompa, yang membantu menjaga kondisi operasional yang optimal. Salah satu aspek penting dari sistem ini adalah tampilan Human-Machine Interface (HMI), yang memudahkan operator dalam memantau status operasional secara real-time. HMI memungkinkan operator untuk membuat keputusan yang lebih cepat dan tepat, serta meningkatkan respons terhadap situasi darurat. Penelitian ini juga menunjukkan bahwa integrasi antara sistem kontrol otomatis dan HMI tidak hanya meningkatkan efisiensi, tetapi juga mengurangi kemungkinan kesalahan manusia dalam pengelolaan proses pendinginan.Secara keseluruhan, temuan dari penelitian ini menunjukkan bahwa penerapan sistem kontrol otomatis di PT. Infineon memberikan kontribusi signifikan terhadap peningkatan kinerja sistem pendinginan. Kami berharap hasil penelitian ini dapat menjadi referensi berharga bagi industri lain yang ingin menerapkan sistem kontrol otomatis serupa untuk meningkatkan efisiensi operasional mereka.
References
Abdullah, A. H., et al. (2019). Optimizing chilled water system performance in semiconductor manufacturing. Journal of Cleaner Production, 215, 1090–1099.
Al-Badri, A., Khalil, S., & Hassan, M. (2022). Improving chiller stability and performance using variable-speed compressors with PID and fuzzy control. Energies, 15(14), 5147. https://doi.org/10.3390/en15145147
Arifin, Z., et al. (2021). Variable Speed Drive application for energy savings in industrial pumping systems. IOP Conference Series: Materials Science and Engineering, 1098, 042034.
Banaulikar, A. (2020). Real Time Monitoring and Control for Industrial Automation using PLC. International Journal for Research in Applied Science and Engineering Technology, 8(7), 1193–1200. https://doi.org/10.22214/ijraset.2020.30453
Cui, X., Xu, P., Song, G., Gu, H., Gu, H., & Wang, L. (2022). PID Control of a Superheated Steam Temperature System Based on Integral Gain Scheduling. 1–16.
Dos Santos, C. G., Ruivo, J. P., Gasparini, L. B., Rosa, M. T. D. M. G., Odloak, D., & Tvrzská De Gouvêa, M. (2022). Steady-state simulation and optimization of an air cooled chiller. Case Studies in Thermal Engineering, 36(January). https://doi.org/10.1016/j.csite.2022.102142
Huong, P. T. T., Hong, H. M., & Anh, L. N. (2021). The effect of the chilled water temperature on the performance of an experimental air-cooled chiller. Vietnam Journal of Mechanics, January. https://doi.org/10.15625/0866-7136/15054
Khetabi, E. M., Bouziane, K., François, X., Lachat, R., Meyer, Y., & Candusso, D. (2025). Analysis of local current density, temperature, and mechanical pressure distributions in an operating PEMFC under variable compression. Applied Energy, 394(May), 126187. https://doi.org/10.1016/j.apenergy.2025.126187
Jiang, Y., Chen, W., & Yang, Z. (2011). Optimal control strategy of variable speed drive in chiller plants. Frontiers of Mechanical Engineering in China, 6(3), 279–285. https://doi.org/10.1007/s11771-011-0733-3
Kim, Y.-J., Ha, J.-W., Park, K.-S., & Song, Y.-H. (2021). A Study on the Energy Reduction Measures of Data Centers through Chilled Water Temperature Control and Water-Side Economizer. Energies, 14(12), 3575. https://doi.org/10.3390/en14123575
Ko, J., Huh, J., & Kim, J. (2019). Improvement of Energy E ffi ciency and Control Performance of Cooling System Fan Applied to. 1–27.
Lee, J., & Cho, Y. (2020). Model predictive control of chilled water plants for improved energy efficiency. Applied Thermal Engineering, 174, 115275.
Mehta, N., et al. Design of HMI Based on PID Control of Temperature. IJERT (2017).
Mokhtar, A., et al. (2020). Energy efficiency improvement in chilled water systems using advanced control strategies. Energy Reports, 6, 238–247.
Otomasi, J., Azizah, A., Wardhana, A. S., Hamdani, C. N., Kilang, I., & Blora, K. (2021). Pengujian Sistem Pengendalian Temperatur pada Prototipe Heat exchanger Berbasis PID. 13(2), 81–91.
Pariotis, E., Tsoutsanis, E., & Lazakis, I. (2019). Integration of variable speed drive pumps in marine cooling systems. Journal of Marine Science and Engineering, 7(8), 253. https://doi.org/10.3390/jmse7080253
Song, Y., & Zhao, X. (2018). Power characteristics of frequency-converted cooling water systems. Building Services Engineering Research and Technology, 39(1), 52–67. https://doi.org/10.1177/0143624417733364
Sulaiman, M., et al. (2023). Integration of PID control and SCADA for HVAC and chilled water systems. Journal of Building Engineering, 62, 105436.
Sumeru, K., Pramudantoro, T. P., Badarudin, A., Setyawan, A., Sumeru, H. A., Sukri, M. F. bin, & Sulaimon, S. (2024). Performance evaluation of a central air conditioning system using condensate as a discharge line cooler. Case Studies in Thermal Engineering, 63(July), 105310. https://doi.org/10.1016/j.csite.2024.105310
Vasantharaj, A., Divyabashini, B., Keerthana, C., & Gowri, M. (2025). Industrial Process Monitoring and Control Interface using HMI (Human-Machine Interface). Icsice 24, 1594–1607. https://doi.org/10.2991/978-94-6463-718-2_133
Zhang, Z., Zhao, W., Ma, Y., Yao, Y., Yu, T., Zhang, W., Guo, H., Duan, X., Yan, R., Xu, D., & Chen, M. (2025). A flexible integrated temperature-pressure sensor for wearable detection of thermal runaway in lithium batteries. Applied Energy, 381(August 2024), 125191. https://doi.org/10.1016/j.apenergy.2024.125191
Zhao, C., & Guo, L. (2021). Control of Nonlinear Uncertain Systems by Extended PID. IEEE Transactions on Automatic Control, 66(8), 3840–3847. https://doi.org/10.1109/TAC.2020.3030876
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhardika, Wiwik Wiharti, Riza Widia, Andira Agustin, Yani Kamisa Putri , Yudia Meka Seftiani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.