Analysis of Mangrove Stress Levels Using the NDRE Index and SPAD Chlorophyll Sensor in the Air Telang Mangrove Reserve
Analisis Tingkat Stres Mangrove Menggunakan Pendekatan Indeks NDRE dan Sensor SPAD di Kawasan Hutan Lindung Air Telang
DOI:
https://doi.org/10.32502/jgsa.v5i3.1001Keywords:
NDRE, SPAD, Vegetation Index, Mangrove Stress, Remote SensingAbstract
Monitoring mangrove health is essential for identifying stress caused by environmental and anthropogenic pressures, such as salinity, sedimentation, hydrological changes, and land clearing around the mangrove ecosystem. This study aims to map mangrove stress levels in the Air Telang Mangrove Reserve by integrating remote sensing data through the analysis of the NDRE (Normalized Difference Red Edge) index and SPAD (Soil Plant Analysis Development) measurements. A quantitative approach was applied using NDRE analysis from satellite imagery processed with ArcGIS and in-situ SPAD chlorophyll measurements. The NDRE analysis results indicate that mangrove vegetation is predominantly classified as healthy, covering an area of 2,300.61 ha (75.85%), with 2.29 ha (0.08%) categorized as very healthy, 639.14 ha (21.07%) under moderate stress, and 91.10 ha (3.00%) classified as highly stressed or non-vegetated. These findings suggest that the majority of mangroves are in good condition, while only a small portion has been detected as experiencing stress. The correlation between SPAD and NDRE values showed a strong positive relationship with a correlation coefficient of r = 0.748 (p < 0.001) and a coefficient of determination (R²) of 0.560. These results indicate that the NDRE index can represent chlorophyll content in mangrove vegetation and serve as an alternative to SPAD-based field measurements. Therefore, both SPAD measurements and NDRE vegetation indices can be considered effective tools for assessing the health or stress levels of mangrove ecosystems.
References
Abou Samra, R. M., Almazroui, M., Li, W., & El-Askary, H. (2025). Monitoring mangrove dynamics and evaluating future afforestation potential in the Egyptian Red Sea. Environmental and Sustainability Indicators, 26(May), 100705. https://doi.org/10.1016/j.indic.2025.100705
Ainunnisa, I., & Haerani, H. (2023). The identification of pests and diseases of rice plants using sentinel-2 satellite imagery data at the end of the vegetative stage. IOP Conference Series: Earth and Environmental Science, 1230(1). https://doi.org/10.1088/1755-1315/1230/1/012148
Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi C., R. E., Thompson, T., Lascano, R. J., Li, H., & Moran, M. S. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Proc. 5th Int. Conf. Precis Agric, July 2015.
Beckett, H. A. A., Neeman, T., Fuenzalida, T. I., Bryant, C., Latorre, S. C., Ovington, L. I., Sack, L., Meir, P., & Ball, M. C. (2023). Ghosts of dry seasons past: Legacy of severe drought enhances mangrove salinity tolerance through coordinated cellular osmotic and elastic adjustments. Plant Cell and Environment, 46(7), 2031–2045. https://doi.org/10.1111/pce.14604
Boiarskii, B. (2019). Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. Journal of Mechanics of Continua and Mathematical Sciences, spl1(4). https://doi.org/10.26782/jmcms.spl.4/2019.11.00003
Cahyono, T. (2017). Statistik Uji Korelasi. In Yayasan Sanitarian Banyumas: Vol. Pertama.
Choi, H. B., Han, K. H., & Seo, J. (2024). Normalized Difference Red-Edge Estimation with Modified DiscoGAN Model. IEEE Access, 12(October), 191661–191669. https://doi.org/10.1109/ACCESS.2024.3517602
Connelly, X. M. (1997). The use of a chlorophyll meter (SPAD-502) for field determinations of red mangrove (Rhizophora mangle L.) leaf chlorophyll amount. NASA Univ. Res. Cent. Tech. Adv. Educ. Aeronaut. Space Auton. Earth Environ., 1(1983), 187–190.
Darwati, H., Poedjirahajoe, E., Sadono, R., & Soewarno, H. B. (2022). Karakteristik Perairan Dan Species Mangrove Dominan Di Pulau Panjang Desa Padang Tikar Ii, Kabupaten Kubu Raya Kalimantan Barat. Jurnal Hutan Lestari, 10(4), 1002–1009.
Eddy, S., Iskandar, I., Ridho, M. R., & Mulyana, A. (2017). Land cover changes in the air telang protected forest, South Sumatra, Indonesia (1989-2013). Biodiversitas, 18(4), 1538–1545. https://doi.org/10.13057/biodiv/d180432
Eddy, S., & Mutiara, D. (2018). Dinamika Tutupan Lahan Kawasan Hutan Lindung Air Telang Menggunakan Teknik Overlay Multitemporal. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 15(2), 96. https://doi.org/10.31851/sainmatika.v15i2.2179
Fatmawati, Y., & Ruchlihadiana, A. (2024). Akuisisi Data Citra Menggunakan Uav Multispektral Guna Penentuan Indeks Kerapatan Vegetasi Dengan Metode Ndvi Dan Ndre. Geoplanart, 6(2), 1–10.
Haque, M. A., Reza, M. N., Ali, M., Karim, M. R., Ahmed, S., Lee, K. Do, Khang, Y. H., & Chung, S. O. (2024). Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review. Korean Journal of Remote Sensing, 40(4), 319–341. https://doi.org/10.7780/kjrs.2024.40.4.1
Hawkins, T. S., Gardiner, E. S., & Comer, G. S. (2009). Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17(2), 123–127. https://doi.org/10.1016/j.jnc.2008.12.007
Idrus, A. Al, Liwa, I. M., & Hadiprayitno, G. (2018). Jurnal Pengabdian Magister Pendidikan IPA Sosialisasi Peran dan Fungsi Mangrove Pada Masyarakat di Kawasan Gili Sulat Lombok Timur. Jurnal Pengabdian Magister Pendidikan IPA, (1) 1, 52–59. https://jppipa.unram.ac.id/index.php/jpmpi/article/view/213
Lewis, R. R., Milbrandt, E. C., Brown, B., Krauss, K. W., Rovai, A. S., Beever, J. W., & Flynn, L. L. (2016). Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Marine Pollution Bulletin, 109(2), 764–771. https://doi.org/10.1016/j.marpolbul.2016.03.006
Liu, Y., & Zhu, X. (2024). Tracking mangrove light use efficiency using normalized difference red edge index. Ecological Indicators, 168(October), 112774. https://doi.org/10.1016/j.ecolind.2024.112774
Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex and Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z
Meiyerani, J., Melki, M., Widjajanti, H., Rozirwan, R., & Aryawati, R. (2024). Pengaruh Metode Filtrasi Terhadap Peningkatan Kualitas Fisik Air Muara Sungsang, Banyuasin. Journal of Tropical Marine Science, 8(1), 11–18. https://doi.org/10.33019/jour.trop.mar.sci.v8i1.5680
Merly, S. L., Sianturi, R., & Nini, A. L. (2022). Study of Correlation and Diversity of Gastropods at Mangrove Ecosystem in Payum Beach, Merauke. Jurnal Moluska Indonesia, 6(1), 12–20. https://doi.org/10.54115/jmi.v6i1.56
Niinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), 693–714. https://doi.org/10.1007/s11284-010-0712-4
Nobel, P. S. (1976). Photosynthetic Rates of Sun versus Shade Leaves ofHyptis emoryi Torr. Nature, 218–223.
Patty, S. I., Nurdiansah, D., Rizqi, M. P., & Rikardo Huwae. (2022). Analisis Sebaran dan Kerapatan Vegetasi Mangrove Menggunakan Citra Landsat 8 di Bolaang Mongondow Timur, Sulawesi Utara. Jurnal Ilmiah PLATAX, 10(2), 224. https://doi.org/10.35800/jip.v10i2.40841
Rasyidi, A. F., Sulistiani, R., & Bin, I. (2024). Kadar Klorofil Daun Bibit Kelor (Moringa oleifera L.) pada Berbagai Dosis Kompos. AGRIUM: Jurnal Ilmu Pertanian, 27(1). https://doi.org/10.30596/agrium.v27i1.17486
Rendana, M., Idris, W. M. R., Rahim, S. A., Rahman, Z. A., & Lihan, T. (2020). Potential of normalized difference vegetation index for mapping of soft clay area in paddy fields of Kedah, Malaysia. Indonesian Journal of Geography, 52(1), 22–28. https://doi.org/10.22146/ijg.43617
Rosalina, D., Sabilah, A. A., Rombe, K. H., & Warni. (2024). Mapping of Mangrove Conditions Using Sentinel-2 Imagery. JST (Jurnal Sains Dan Teknologi), 13(1), 89–98. https://doi.org/10.23887/jstundiksha.v13i1.65281
Shibaeva, T. G., Mamaev, A. V., & Sherudilo, E. G. (2020). Evaluation of a SPAD-502 Plus Chlorophyll Meter to Estimate Chlorophyll Content in Leaves with Interveinal Chlorosis. Russian Journal of Plant Physiology, 67(4), 690–696. https://doi.org/10.1134/S1021443720040160
Sholiqin, M., Pramadaningtyas, P. S., Solikah, I., Febriyanti, S., Pambudi, M. D., Mahartika, S. B., Umam, A. F., Liza, N., & Setyawan, A. D. (2022). Analysis of the diversity and evenness of mangrove ecosystems in the Pacitan Coast, East Java, Indonesia. International Journal of Bonorowo Wetlands, 11(2), 84–94. https://doi.org/10.13057/bonorowo/w110205
Sukmadana, R. T., & Sagita, N. (2022). Pemanfaatan Data Satelit Himawari-8 Untuk Analis Kejadian Hujan Lebat Di Cirebon, Jawa Barat (Tanggal 17 Desember 2020 ). Megasains, 13(2). https://doi.org/10.46824/megasains.v13i2.41
Théroux-Rancourt, G., Earles, J. M., Gilbert, M. E., Zwieniecki, M. A., Boyce, C. K., McElrone, A. J., & Brodersen, C. R. (2017). The bias of a two-dimensional view: comparing two-dimensional and three-dimensional mesophyll surface area estimates using noninvasive imaging. New Phytologist, 215(4), 1609–1622. https://doi.org/10.1111/nph.14687
Uddling, J., Gelang-Alfredsson, J., Piikki, K., & Pleijel, H. (2007). Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91(1), 37–46. https://doi.org/10.1007/s11120-006-9077-5
Yuhao, A., Che’ya, N. N., Roslin, N. A., & Ismail, M. R. (2020). Rice chlorophyll content monitoring using vegetation indices from multispectral aerial imagery. Pertanika Journal of Science and Technology, 28(3), 779–795.
Zakiyah, M., Manurung, T. F., & Wulandari, R. S. (2018). Kandungan Klorofil Daun Pada Empat Jenis Pohon DiArboretum Sylva Indonesia Pc. Universitas Tanjungpura. Jurnal Hutan Lestari, 6(1), 48–55.
Zhen, J., Jiang, X., Xu, Y., Miao, J., Zhao, D., Wang, J., Wang, J., & Wu, G. (2021). Mapping leaf chlorophyll content of mangrove forests with Sentinel-2 images of four periods. International Journal of Applied Earth Observation and Geoinformation, 102. https://doi.org/10.1016/j.jag.2021.102387
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Global Sustainable Agriculture

This work is licensed under a Creative Commons Attribution 4.0 International License.