Estimation of Belowground Carbon Stocks in Peatlands under Different Land Cover Types in Ogan Komering Ilir Regency, Indonesia
DOI:
https://doi.org/10.32502/jgsa.v5i3.1398Keywords:
Subsurface carbon stock, Peatland, Loss on Ignition (LOI), One-Way ANOVA, Land coverAbstract
Monitoring subsurface carbon stocks in peat soils is crucial for understanding how different land cover types contribute to carbon storage and climate change mitigation. This study aims to estimate subsurface carbon (CO₂) stocks in peatlands under various land cover conditions. Soil sampling was conducted three times in October, November, and December 2024 across managed oil palm, unmanaged oil palm, shrubland, and swamp forest land covers. Additional sampling was carried out in August, September, and October 2025 on mixed gardens and secondary forests with dense vegetation. Samples were collected based on peat decomposition levels at an approximate depth of ±400 m and analyzed in the laboratory to determine bulk density (BD) and organic carbon content (%C) using the Loss on Ignition (LOI) method. Carbon stock values were calculated and converted to CO₂ equivalents to obtain total estimates for each sampling point. Data were analyzed descriptively and statistically using One-Way ANOVA followed by the Tukey HSD post hoc test. The results revealed that managed oil palm land had the highest carbon stock 11,607.54 tons/ha, followed by unmanaged oil palm 11,107.32 tons/ha, shrubland 7,691.36 tons/ha, mixed garden 7,510.39 tons/ha, secondary forest 7,415.11 tons/ha, and swamp forest 6,872.56 tons/ha. These findings suggest that land cover type and management practices significantly affect subsurface carbon stocks, with well-managed lands tending to store higher amounts of carbon compared to natural or unmanaged areas.
References
Agus, F., Hairiah, K., Mulyani, A., & Centre, W. A. (2011). Measuring carbon stock in Peat Soil: Practical Guidelines. http://balittanah.litbang.deptan.go.id
Agus, F., & Subiksa, I. G. M. (2008). Lahan Gambut : Potensi untuk Pertanian dan Aspek Lingkungan. In Balai Penelitian Tanah dan World Agroforestry Centre (ICRAF). https://doi.org/10.1016/j.foreco.2014.08.031
Astiani, D., Widiastuti, T., Ekamawanti, H. A., Ekyastuti, W., Roslinda, E., & Mujiman. (2022). The partial contribution of CO2-emission losses from subsidence in small-holder oil palm plantation on a tropical peatland in West Kalimantan, Indonesia. Biodiversitas, 23(12), 6539–6545. https://doi.org/10.13057/biodiv/d231252
Azqandi, M., Ramavandi, B., Nasseh, N., Zaarei, D., & Fanaei, F. (2024). Green synthesis of manganese ferrite magnetic nanoparticle and its modification with metallic-organic frameworks for the tetracycline adsorption from aqueous solutions: A mathematical study of kinetics, isotherms, and thermodynamics. Environmental Research, 256(November 2023), 118957. https://doi.org/10.1016/j.envres.2024.118957
Beyer, M., Kühnhammer, K., & Dubbert, M. (2020). In situ measurements of soil and plant water isotopes: A review of approaches, practical considerations and a vision for the future. Hydrology and Earth System Sciences, 24(9), 4413–4440. https://doi.org/10.5194/hess-24-4413-2020
Duddigan, S., Shaw, L. J., Alexander, P. D., & Collins, C. D. (2022). Effects of application of horticultural soil amendments on decomposition, quantity, stabilisation and quality of soil carbon. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-22451-2
Grandgirard, J., Poinsot, D., Krespi, L., Nénon, J. P., & Cortesero, A. M. (2002). Costs of secondary parasitism in the facultative hyperparasitoid Pachycrepoideus dubius: Does host size matter? Entomologia Experimentalis et Applicata, 103(3), 239–248. https://doi.org/10.1023/A
Haq, M. I., Anshari, G. Z., & Nusantara, R. W. (2025). Beberapa Sifat Fisika Tanah Gambut Terdegradasi Akibat Kebakaran Lahan Di Desa Rasau Jaya Tiga Kabupaten Kubu Raya. Pedontropika : Jurnal Ilmu Tanah Dan Sumber Daya Lahan, 11(1), 51–59. https://doi.org/10.26418/pedontropika.v11i1.85530
Hussin, A. M., Tala’a, A. A., Fadhil, S. A. N., & Salman, H. A. (2021). The adverse effect of long term intake of Monosodium Glutamate on kidney performance. IOP Conference Series: Earth and Environmental Science, 880(1). https://doi.org/10.1088/1755-1315/880/1/012056
Ivansyah, O., Zubair, H., Irfan, U. R., & Widodo, S. (2025). Geochemical behavior of lateral peat degradation in the Kubu Raya Region, West Kalimantan, Indonesia. Journal of Degraded and Mining Lands Management, 12(4), 8405–8419. https://doi.org/10.15243/jdmlm.2025.124.8405
Jauhiainen, J., Silvennoinen, H., Könönen, M., Limin, S., & Vasander, H. (2016). Effects of Carbon Substrate Lability on Tropical Peat Mineralization Under Aerobic and Anaerobic Conditions. 127–131.
Jauhiainen, J., Silvennoinen, H., Limin, S. H., & Vasander, H. (2008). Effect of hydrological restoration on degraded tropical peat carbon fluxes. Restoration of Tropical Ecosystems, 111.
Juliano, G., Suwardi, S., & Sudadi, U. (2023). Dynamics of Tropical Peatlands Characteristics and Carbon Stocks as Affected by Land Use Conversion and Ages of Land Use in Riau Province, Indonesia. Journal of Tropical Soils, 29(1), 23–32. https://doi.org/10.5400/jts.2024.v29i1.23-32
Kunarso, A., Farquharson, R., Rachmanadi, D., Hearn, K., Blanch, E. W., & Grover, S. (2024). Land use change alters carbon composition and degree of decomposition of tropical peat soils. Mires and Peat, 30(Drzymulska 2016), 1–23. https://doi.org/10.19189/MaP.2023.OMB.Sc.2121334
Nusantara, R. W., Sudarmadji, Djohan, T. S., & Haryono, E. (2017). Kajian Karbon dan Hara Tanah Gambut Akibat Alih Fungsi Lahan Gambut di Kalimantan Barat. Jurnal Pedon Tropika, 3, 97–105. DOI: 10.26418/pedontropika.v3i1.23439
Pratiwi, R. (2025). Ananlisis Spasial Pengaruh Restorasi Terhadap Dinamika Kebakaran Lahan Gambut Kabupaten Ogan Komering Ilir di KHG Sungai Burnai- Sungai Sibumbung. 10(2), 1–23. 10.36418/syntax-literate.v10i2.44820
Prayitno, M. B., Sabaruddin, S., Setyawan, D., & Yakup, Y. (2013). Pendugaan cadangan karbon gambut pada agroekosistem kelapa sawit. Jurnal Agrista, 17(3), 86–92. https://www.neliti.com/publications/218880/pendugaan-cadangan-karbon-gambut-pada-agroekosistem-kelapa-sawit
Qirom, M. A., Yuwati, T. W., Rachmanadi, D., & Halwany, W. (2021). The variation of carbon content and bulk density on different time period post fire and peat depth. IOP Conference Series: Earth and Environmental Science, 886(1). https://doi.org/10.1088/1755-1315/886/1/012096
Sterner, S., Aslan, C., Best, R., & Chaudhry, T. (2022). Forest management effects on vegetation regeneration after a high severity wildfire: A case study in the southern Cascade range. Forest Ecology and Management, 520(June), 120394. https://doi.org/10.1016/j.foreco.2022.120394
Suharnoto, Y., Setiawan, B. I., Pribadi, A., Muslihat, L., & Buchori, D. (2022). Assessments of Underground Carbon Stocks in Merang-Kepahyang Peatlands, South Sumatra, Indonesia. Sustainability (Switzerland), 14(9), 1–14. https://doi.org/10.3390/su14095473
Swails, E., Frolking, S., Deng, J., & Hergoualc’h, K. (2024). Degradation increases peat greenhouse gas emissions in undrained tropical peat swamp forests. Biogeochemistry, 167(1), 59–74. https://doi.org/10.1007/s10533-023-01110-2
Widyastuti, M. T., Minasny, B., Padarian, J., Maggi, F., Aitkenhead, M., Connolly, J., Fiantis, D., Kidd, D., Ma, Y., Macfarlane, F., Robb, C., Setiawan, B. I., & Taufik, M. (2024). PEATGRIDS: Mapping thickness and carbon stock of global peatlands via digital soil mapping. Earth System Science Data, 12559239(August), 1–29. https://essd.copernicus.org/preprints/essd-2024-333/?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound
Wijayanti, F., Fitria, A. D., Jaya, A., Aditya, H. F., Lestari, S. R., & Maroeto, M. (2025). Potential agroforestry system on peat land to improve soil chemical properties in Palangkaraya, Central Borneo. Journal of Ecological Engineering, 26(10), 103–115. https://doi.org/10.12911/22998993/205594
Xiangyang, S., Genxu, W., Juying, S., Shouqin, S., Zhaoyong, H., Chunlin, S., & Shan, L. (2022). Contrasting water sources used by a coniferous forest in the high-altitude, southeastern Tibetan Plateau. Science of the Total Environment, 849(August), 157913. https://doi.org/10.1016/j.scitotenv.2022.157913
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Global Sustainable Agriculture

This work is licensed under a Creative Commons Attribution 4.0 International License.











