Penerapan Machine Learning untuk Pencarian Pelanggan Loyal Berpotensi Menggunakan Metode Python Pandas Seaborn
DOI:
https://doi.org/10.32502/integrasi.v10i1.292Keywords:
Prediksi, RFM, Pelanggan Loyal, Transaksi, AlgoritmaAbstract
Kunci kesuksesan berbisnis agar target penjualan tercapai dengan menjaga kepercayaan dan minat daya beli konsumen untuk tetap menjadi pelanggan setia. Salah satu faktor penunjangnya di bidang pemasaran yaitu dengan cara memprediksi untuk pencarian pelanggan loyal berpotensi. Untuk membangun model tersebut, perlu data demografi, sosial, transaksional, metrik perilaku, dan fitur pendukung lainnya. Masalah utama yang terjadi saat ini terbatasnya bagian pemasaran memiliki data pelanggan dan hanya mengandalkan informasi yang disediakan oleh sistem ERP yang sebagian besar datanya berorientasi transaksional. Tujuan utama dari penelitian ini adalah untuk mengusulkan kombinasi analisis RFM (Recency, Frequency and Monetary) dan algoritma machine learning untuk memprediksi potensi pelanggan berdasarkan sebagian besar data transaksional. Dataset diambil dari sistem ERP perusahaan sheet metal di PT.ABC. Skor RFM dihitung untuk setiap pelanggan dalam jangka waktu 6 bulan sebelum tanggal akhir pemeriksaan. Nilai target untuk model prediksi ini adalah metrik pelanggan berpotensi yang menunjukkan apakah pelanggan telah melakukan transaksi dalam 6 bulan ke depan setelah analisis RFM atau tidak. Eksperimen dilakukan dengan metode Python Pandas Seaborn. Hasil menunjukkan batasan skor dan metrik RFM menggunakan algoritma machine learning, perusahaan dapat memprediksi pelanggan loyal berpotensi. Skor terbaik ditunjukkan pelanggan platinum cenderung berbelanja lebih sering dan lebih banyak berbelanja dibandingkan pelanggan lain.
References
M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means Algorithm: A Comprehensive Survey and Performance Evaluation”, Electronics, vol. 9, no. 8, p. 1295, 2020, doi: https://doi.org/10.3390/electronics9081295
A.N. Alrawi and N. Ajlouni, “Intelligent Machine Learning Customer Segmentations Algorithm”, MJAIAS, vol. 3, no. 1, May 2022.
D. Bratina and A. Faganel, “Using Supervised Machine Learning Methods for RFM Segmentation: A Casino Direct Marketing Communication Case”, Market-Tržište, vol. 35, no.1, pp. 7-22, 2023.
P. Chaudhary, V. Kalra, and S. Sharma, “A hybrid machine learning approach for customer segmentation using rfm analysis”, in International Conference on Artificial Intelligence and Sustainable Engineering: Select Proceedings of AISE, pp. 87-100, April 2022.
A. J. Christy, A. Umamakeswari, L. Priyatharsini, and A. Neyaa, “RFM Ranking – an Effective Approach to Customer Segmentation,” Journal of King Saud University - Computer and Information Sciences, vol. 33, no. 10, Sep. 2018, doi: https://doi.org/10.1016/j.jksuci.2018.09.004
A. Dewabharata, “Customer Segmentation Using the K-Means Clustering as a Strategy to Avoid Overstock in Online Shop Inventory”, Proceedings of the 1st International Conference on Contemporary Risk Studies (ICONIC-RS), South Jakarta, DKI Jakarta, March-1 April 2022, doi: https://10.4108/eai.31-3-2022.2320688
R. Gustriansyah, N. Suhandi, and F. Antony, “Clustering optimization in RFM analysis based on k-means”, Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no.1, pp. 470-477, 2022.
J. Joung and H. Kim, “Interpretable machine learning-based approach for customer segmentation for new product development from online product reviews”, International Journal of Information Management, vol. 70, p. 102641, Jun. 2023, doi: https://doi.org/10.1016/j.ijinfomgt.2023.102641
J. Ma, “E-commerce Customer Segmentation Based on RFM Model”, Lecture Notes in Electrical Engineering, pp. 926–931, 2022, doi: https://doi.org/10.1007/978-981-16-8052-6_118
I. Maryani, D. Riana, R. D. Astuti, A. Ishaq, Sutrisno, and E. A. Pratama, “Customer Segmentation based on RFM model and Clustering Techniques With K-Means Algorithm”, 2018 Third International Conference on Informatics and Computing (ICIC), Oct. 2018, doi: https://doi.org/10.1109/iac.2018.8780570
S. Monalisa, Y. Juniarti, E. Saputra, F. Muttakin, and T.K. Ahsyar, “Customer segmentation with RFM models and demographic variable using DBSCAN algorithm”, Telkomnika (Telecommunication Computing Electronics and Control), vol. 21, no. 4, pp. 742-749, 2023, doi: https://doi.org/10.12928/TELKOMNIKA.v21i4.22759
S. Ozan, “A Case Study on Customer Segmentation by using Machine Learning Methods”, 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Sep. 2018, doi: https://doi.org/10.1109/idap.2018.8620892
P. Saurabh, H. Khan, S. Mehta and U. Mandawkar, "Study of Customer Segmentation Using K-Means Clustering and RFM Modelling", Journal of Engineering Sciences, vol. 12, no. 6, pp. 556-559, 2021.
M. A. Rahim, M. Mushafiq, S. Khan, and Z. A. Arain, “RFM-based repurchase behavior for customer classification and segmentation”, Journal of Retailing and Consumer Services, vol. 61, p. 102566, Jul. 2021, doi: https://doi.org/10.1016/j.jretconser.2021.102566
İ. SABUNCU, E. TÜRKAN, and H. POLAT, “Customer Segmentation and Profiling with Rfm Analysis,” Turkish Journal of Marketing, vol. 5, no. 1, pp. 22–36, Apr. 2020, doi: https://doi.org/10.30685/tujom.v5i1.84
AH. Sial, S.Y.S. Rashdi, and A.H. Khan, "Comparative analysis of data visualization libraries Matplotlib and Seaborn in Python," International Journal, vol. 10, no. 1, pp. 277-281, 2021.
S. Wan, J. Chen, Z. Qi, W. Gan, and L. Tang, “Fast RFM model for customer segmentation”, in WWW 2022 - Companion Proceedings of the Web Conference, April 2022, doi: https://doi.org/10.1145/3487553.3524707
Z. Xian, P. Keikhosrokiani, C. XinYing, and Z. Li, “An RFM Model Using K-Means Clustering to Improve Customer Segmentation and Product Recommendation”, Handbook of Research on Consumer Behavior Change and Data Analytics in the Socio-Digital Era, pp. 124-145, 2022, IGI-Global, Malaysia, doi: https://10.4018/978-1-6684-4168-8.ch006
F. Yoseph and M. Heikkila, “Segmenting Retail Customers with an Enhanced RFM and a Hybrid Regression/Clustering Method,” IEEE Xplore, Dec. 01, 2018, doi: https://ieeexplore.ieee.org/abstract/document/8614012/
A. M. A. Zamil and T. G. Vasista, “Customer segmentation using RFM analysis: Realizing through Python implementation”, Pacific Business Review International, vol.13, pp. 24-36, May 2021.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Integrasi: Jurnal Ilmiah Teknik Industri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.